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ABSTRACT
Objective Implantable cardioverter defibrillators (ICD),
cardiac resynchronisation therapy pacemakers (CRT-P)
and the combination therapy (CRT-D) have been shown
to reduce all-cause mortality compared with medical
therapy alone in patients with heart failure and reduced
EF. Our aim was to synthesise data from major
randomised controlled trials to estimate the comparative
mortality effects of these devices and how these vary
according to patients’ characteristics.
Methods Data from 13 randomised trials (12 638
patients) were provided by medical technology
companies. Individual patient data were synthesised
using network meta-analysis.
Results Unadjusted analyses found CRT-D to be the
most effective treatment (reduction in rate of death vs
medical therapy: 42% (95% credible interval: 32–50%),
followed by ICD (29% (20–37%)) and CRT-P (28%
(15–40%)). CRT-D reduced mortality compared with
CRT-P (19% (1–33%)) and ICD (18% (7–28%)). QRS
duration, left bundle branch block (LBBB) morphology,
age and gender were included as predictors of benefit in
the final adjusted model. In this model, CRT-D reduced
mortality in all subgroups (range: 53% (34–66%) to
28% (−1% to 49%)). Patients with QRS duration
≥150 ms, LBBB morphology and female gender
benefited more from CRT-P and CRT-D. Men and those
<60 years benefited more from ICD.
Conclusions These data provide estimates for the
mortality benefits of device therapy conditional upon
multiple patient characteristics. They can be used to
estimate an individual patient’s expected relative benefit
and thus inform shared decision making. Clinical
guidelines should discuss age and gender as predictors
of device benefits.

INTRODUCTION
In addition to optimal medical therapy, implantable
cardiac devices have an established role in the
treatment of heart failure with reduced EF.
International clinical guidelines1 2 make recommen-
dations for implantable cardioverter defibrillators
(ICD), cardiac resynchronisation therapy pace-
makers (CRT-P) and the combined device, CRT-D,
based on the presence of specific patient character-
istics, recognising that the clinical benefit associated
with these devices varies across subgroups within
the broader population of patients with heart
failure and reduced EF. These differences arise due
to difference in underlying prognosis as well as dif-
ferences in the relative treatment effects of devices
(ie, the HRs comparing alternative interventions).

Estimates of relative treatment effects for patients
with different characteristics are, therefore,
required to assess the comparative clinical benefit
and cost-effectiveness of these devices. With this
objective, we pooled individual patient data from
all major randomised controlled trials of the
devices in a network meta-analysis. This work was
developed to inform National Institute for Health
and Care Excellence (NICE) guidance for the
devices.3

Until now, meta-analyses of published randomised
trials4–8 have reported differences in treatment
effects of CRT according to QRS duration and
morphology and of ICD according to gender.9 In
addition, subgroup analyses of individual trials have
reported statistically significant variation in all-cause
mortality benefit (or composite endpoints, including
all-cause mortality) by New York Heart Association
(NYHA) class,10 QRS duration;11 12 QRS morph-
ology11 and gender.12 An individual patient data
meta-analysis is the ideal vehicle to explore the
effect of these and other patient characteristics on
relative treatment effects. This type of analysis
avoids reliance on inconsistent individual trial sub-
group results or restricting meta-analysis to pub-
lished subgroup data. A network meta-analysis was
necessary as patients with heart failure and reduced
EF may benefit from ICD, CRT-D or CRT-P (ie,
simple pairwise comparisons do not answer the clin-
ical question of interest). Network meta-analysis (or
mixed treatment comparison) allows the synthesis
of individual trials that compare different sets of
treatments.13 For example, the treatment effect for
CRT-D versus medical therapy will reflect the direct
evidence from COMPANION14–17 supplemented
by the larger volume of indirect evidence from the
CRT-D versus ICD and ICD versus medical therapy
trials.

METHODS
Systematic review
A systematic review was conducted to identify ran-
domised controlled trials comparing ICD, CRT-P
and CRT-D with each other or with placebo or
medical therapy in patients with heart failure and
reduced EF (defined as LVEF ≤40%). All English
language full publications from 1990 onwards were
considered. Studies were excluded if: patients had
experienced recent myocardial infarction or coron-
ary revascularisation (≤45 days before enrolment);
they compared device variants (eg, different pacing
strategies); patients had familial cardiac conditions
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with a high risk of sudden cardiac death or patients had a sec-
ondary prevention indication for ICD.

Twenty-two trials were identified, and individual patient-level
data from 13 of these were provided by three device manufac-
turers (Boston Scientific, Medtronic and St. Jude Medical). This
represents 95% (12,638/13,350) of patients randomised in the
overall network of evidence, see figure 1. ‘Optimal’ and ‘con-
ventional’ medical therapy was considered to be equivalent.
REsynchonization reVErses Remodeling in Systolic left
vEntricular dysfunction (REVERSE)18 was considered as four
separate designs; Contak-CD19 as two separate designs and
Miracle ICD20 and Miracle ICD II21 as one trial in keeping with
the underlying study designs. The two non-device arms of the
Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT)
(placebo and amiodarone)10 were pooled. Further details of the
systematic review are provided in the on-line supplementary
appendix.

Network meta-analysis
A series of network meta-analyses was performed for all-cause
mortality. As is standard in network meta-analyses of survival
data,22 23 we assume that HRs are multiplicative, that is, the HR
for CRT-D versus medical therapy can be estimated as the
product of the HRs for CRT-D versus ICD and ICD versus
medical therapy. This assumption will be violated when differ-
ences exist between the trials comparing alternative sets of treat-
ments, and these differences are expected to impact upon the
trial HRs. Analyses adjusting for such differences were devel-
oped as previous meta-analyses and subgroup analyses support
the presence of such differences.4–8 10–12

Unadjusted network meta-analyses were performed to estab-
lish the efficacy of the devices in the overall randomised popula-
tions, to determine the impact of excluding studies for which
individual patient data were unavailable and to assess the appro-
priateness of fixed-effects and random-effects analyses. Adjusted
network meta-analyses were performed in order to explore
whether patients with different baseline characteristics (age,
gender, country (USA vs outside-USA), NYHA class, ischaemic
aetiology, LVEF, QRS duration and left bundle branch block
(LBBB) morphology) experienced different effects of treatment.

These variables were recorded across the trials and were selected
following a review of risk scores, clinical guidelines, trial sub-
group analyses and clinical advice. For the adjusted analyses,
patients with QRS duration <120 ms in CRT trials were
excluded as the very low number of deaths (five in total in the
CRT arms) made modelling unstable and there is no evidence
that CRT is effective in this group. This resulted in the exclusion
of 149 patients. In patients with QRS duration <120 ms, the
adjusted analysis only compares ICD with medical therapy.
A sensitivity analysis was run restricted to patients with
QRS≥120 ms and NYHA class II–IV as these were considered to
be a more homogeneous group.

Data were included from each trial throughout the follow-up
period prespecified in the trial protocols. Although longer term
follow-up data are available for a number of trials, these were
not included because of the high rates of cross-over observed
during the additional follow-up periods.24 25

Statistical analysis
The studies for which individual patient data were unavailable
reported summary data in binary form (number of deaths and
number of participants by arm) rather than as HRs. The binary
data were, therefore, combined with HRs obtained from the
individual patient data studies using published statistical
methods.23 These analyses were repeated with and without the
data from the studies for which individual patient data were
unavailable. Fixed-effects and random-effects analyses were run.

In the analysis adjusting for patient characteristics, individual
patient time-to-event data were synthesised across trials using a
Cox proportional hazard model stratified by trial.22 26 All
adjusted models were fitted as fixed- effects analyses. In all ana-
lyses, the impact of baseline patient characteristics on the effi-
cacy of the devices was assumed to be device specific, reflecting
the potentially different mechanisms of action of the devices.

Selection of interaction effects for the adjusted model fol-
lowed the model selection process described by Collett using a
p value of 0.10.27 All results were reviewed for biological plausi-
bility. For the final adjusted model, multiple imputation was
used to address missing baseline variables and continuous vari-
ables were dichotomised to facilitate presentation.

Figure 1 Network of randomised controlled trial evidence. Elipses represent comparators. Arrows represent comparisons of interventions for which
trial data were available. Studies for which individual patient data were available are in bold. Patient numbers represent the total number of patients
enrolled in each trial informing the comparison of interest. CRT-D, cardiac resynchronisation therapy pacemaker with defibrillation therapy;
CRT-P, cardiac resynchronisation therapy pacemakers; ICD, implantable cardioverter defibrillators.
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Further detail regarding the statistical methods is available in
the on-line supplementary appendix.

RESULTS
Individual patient database
The 12 638 patients included in the trial database were followed
up for a mean of 2.5 years (range 0–7.5 years) during which
2422 deaths were observed.

Patient characteristics stratified by trial arm are presented in
table 1. There is considerable overlap in the patients randomised
to the different treatment options. As expected, patients rando-
mised to CRT-P or CRT-D had longer mean QRS duration and
more frequently exhibited LBBB morphology compared with
those randomised to medical therapy or ICD. The majority of
patients were in NYHA class II or III, with CRT-P trials enrol-
ling more individuals in class III and ICD trials in class II. Only
138 (1.1%) of patients had a LVEF in the 36–40% range, so the
analyses presented are representative of patients with LVEF
≤35%.

Unadjusted analysis
Analysis of all trials (including those for which individual
patient data were unavailable) showed CRT-D to be the most
effective treatment (HR when compared against medical
therapy 0.58 (95% credible interval: 0.50–0.68)), with CRT-P
and ICD showing similar effects on mortality (0.72 (0.60–0.85)
and 0.71 (0.63–0.80), respectively), compared with medical
therapy. Head-to-head device comparisons supported a statistic-
ally significant benefit of CRT-D when compared with CRT-P
(0.81 (0.67–0.99)) and ICD (0.82 (0.72–0.93)). Restricting the
network to the 13 trials for which individual patient data were
available did not alter the results (point estimates and CIs fell
within 0.01 of the overall analysis, results not shown).
Restriction of the adjusted analysis to trials for which individual
patient data were available is therefore unlikely to influence the
results.

Adjusted analysis
Univariate analyses suggested that age, gender, LVEF, QRS dur-
ation and LBBB morphology affected mortality benefit, with
p values for the interaction effects ranging from <0.001 to
0.043. These effects were therefore included in a multivariate
model. Dropping each set of interaction effects from this model
in turn worsened the model significantly for age, gender, LVEF

and QRS (p values <0.01 to 0.07). Dropping LBBB did not sig-
nificantly worsen the model fit (p=0.27), but it was, however,
retained given its known clinical importance. Adding in covari-
ables that were not significant in the univariate analysis (USA or
non-USA-based trial; NYHA class; ischaemic aetiology) did not
significantly improve the model fit (p values: 0.21–0.71), and
they were therefore discarded. The multivariate model and the
univariate analyses suggested that lower LVEF (within the range
seen in the trials) increased CRT-D efficacy but reduced CRT-P
and ICD efficacy. As CRT-D is the combined device, these effects
were not deemed clinically plausible. Examination of a dichoto-
mised LVEF variable indicated that the impact of LVEF increased
and decreased device effectiveness in biologically improbable pat-
terns over the range of the variable. LVEF was therefore dropped
from the final model. QRS duration was split into three categor-
ies for the final model (<120 ms, 120–149 ms and ≥150 ms),
reflecting commonly accepted clinical thresholds and age was
split into two categories (<60 and ≥60 years). The results of uni-
variate network meta-analyses are shown in figure 2 for those
variables included in the final multivariate model.

Final model
The final multivariate model included age, gender, QRS dur-
ation and LBBB morphology. Table 2 provides point estimates
and CIs from the multivariate model for the treatment effects
for each device, by subgroup. This allows estimates of risk and
benefit to be made for individual patients with specific QRS
duration and morphology, age and gender. The model para-
meters are reported in the on-line supplementary appendix.

Our model predicts that in all subgroups of patients (LVEF
≤35% and QRS ≥120 ms), CRT-D is associated with a mortality
reduction, which is statistically significant in 15 of 16 subgroups,
the exception being men under 60 years, with QRS duration
≥120 to <150 ms without LBBB morphology where the CI just
spans unity. Estimated relative risk reductions in mortality
ranged from 28% (HR 0.72 (0.51 to 1.01)) in that group to
53% (HR 0.47 (0.34 to 0.66)) in women ≥60 years with QRS
duration ≥150 ms and LBBB. CRT-D is more effective in those
with QRS durations ≥150 ms, in those with LBBB and in
women, with minimal interaction with age.

CRT-P is more effective at reducing mortality in older
patients and in women, in those with QRS duration ≥150 ms
and in those with LBBB morphology. In those with the broadest
QRS and LBBB, the effect size varied from relative risk

Table 1 Characteristics of patients included in trial database

Intervention Medical therapy CRT-D CRT-P ICD Missing (%)

Number of patients 3477 3527 1328 4306 0.0
Age (mean, years) 61.9 65.0 65.0 63.5 0.0
QRS duration (mean, ms) 130.8 156.8 162.3 140.5 1.3
LVEF (mean, %) 23.7 23.4 23.4 23.3 1.4
Gender (% female) 24.0 22.5 30.1 20.7 0.0
US (%) 81.1 61.6 62.6 68.8 0.0
NYHA1 (%) 7.7 6.0 1.1 11.4 0.1
NYHA2 (%) 45.3 59.4 4.5 61.9
NYHA3 (%) 43.5 31.1 85.3 24.9
NYHA4 (%) 3.5 3.5 9.1 1.8
Ischaemic (%) 58.2 60.1 52.3 64.0 6.4
LBBB morphology (%) 37.5 69.4 79.7 45.6 1.8

CRT-D, cardiac resynchronisation therapy pacemaker with defibrillation therapy; CRT-P, cardiac resynchronisation therapy pacemakers; ICD, implantable cardioverter defibrillators;
LBBB, left bundle branch block; NYHA, New York Heart Association.
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reduction of 20% (HR 0.80 (0.56 to 1.14)) in younger men to
44% (HR 0.56 (0.40 to 0.79)) in older women. A substantially
lower effect was observed in those with QRS duration 120–
149 ms and no LBBB (varying from no benefit or potential
harm (HR 1.07 (0.70 to 1.64)) in men aged <60 years to 25%
relative risk reduction (HR 0.75 (0.46 to 1.21)) in women aged
≥60 years).

In contrast, the mortality benefit of ICD therapy is greater in
men than in women, and less apparent in older patients. For all
subgroups of men, the effect size was statistically significant with
relative risk reductions between 24% and 48%. For women, the
estimated mortality benefit of ICD was smaller and the CIs in 9
of the 10 subgroups spanned unity. The estimated effect sizes
were smaller for all subgroups of men and women aged
60 years or more, compared with younger patients.

The sensitivity analysis restricted to patients with QRS ≥120
and NYHA II–IV produced similar results though predicted
greater effectiveness of CRT-D and CRT-P in patients <60 years
and no longer suggested that CRT-P effectiveness depended on
age. For full results, see the on-line supplementary appendix.

DISCUSSION
This individual patient data network meta-analysis incorporated
data from all major trials of ICD, CRT-P and CRT-D in patients
with heart failure and reduced EF. The data set included 2422
deaths in 12 638 patients, representing 95% of all patients ran-
domised in the clinical trials of these technologies.

Tools developed using individual patient characteristics to esti-
mate treatment benefits are the cornerstone of personalised medi-
cine. Unlike conventional subgroup analyses which present

Figure 2 Treatment effect estimates from univariate network meta-analysis model for variables included in final model. The forest plots show the
results of the univariate network meta-analysis incorporating individual baseline characteristics as interaction effects. HRs (mean (95% CI)) are
presented relative to medical therapy with values <1.0 indicating reduced all-cause mortality. CRT-D, cardiac resynchronisation therapy pacemaker with
defibrillation therapy; CRT-P, cardiac resynchronisation therapy pacemakers; ICD, implantable cardioverter defibrillators; LBBB, left bundle branch block.

Table 2 Subgroup-specific treatment effects predicted by multivariate adjusted network meta-analysis

Gender Age QRS LBBB

CRT-D vs MT CRT-P vs MT ICD vs MT CRT-D vs CRT-P CRT-D vs ICD ICD vs CRT-P

HR (95% CI)

Female <60 <120 N 0.82 (0.60 to 1.13)
≥120 to <150 N 0.62 (0.40 to 0.96) 0.86 (0.50 to 1.48) 0.69 (0.48 to 0.99) 0.72 (0.40 to 1.30) 0.90 (0.58 to 1.39) 0.80 (0.46 to 1.39)
≥120 to <150 Y 0.55 (0.36 to 0.84) 0.76 (0.46 to 1.25) 0.74 (0.51 to 1.07) 0.72 (0.42 to 1.25) 0.74 (0.48 to 1.13) 0.98 (0.58 to 1.64)
≥150 N 0.55 (0.35 to 0.86) 0.74 (0.42 to 1.28) 0.77 (0.52 to 1.13) 0.74 (0.41 to 1.35) 0.71 (0.46 to 1.12) 1.04 (0.59 to 1.83)
≥150 Y 0.48 (0.33 to 0.72) 0.65 (0.42 to 1.00) 0.82 (0.59 to 1.15) 0.75 (0.45 to 1.24) 0.59 (0.40 to 0.87) 1.27 (0.79 to 2.04)

≥60 <120 N 1.01 (0.76 to 1.36)
≥120 to <150 N 0.60 (0.41 to 0.90) 0.75 (0.46 to 1.21) 0.85 (0.62 to 1.17) 0.81 (0.48 to 1.37) 0.71 (0.48 to 1.04) 1.14 (0.70 to 1.87)
≥120 to <150 Y 0.53 (0.37 to 0.78) 0.65 (0.42 to 1.02) 0.91 (0.66 to 1.27) 0.82 (0.51 to 1.32) 0.59 (0.41 to 0.84) 1.39 (0.89 to 2.20)
≥150 N 0.53 (0.35 to 0.80) 0.64 (0.39 to 1.03) 0.94 (0.66 to 1.34) 0.84 (0.50 to 1.40) 0.57 (0.38 to 0.84) 1.48 (0.91 to 2.41)
≥150 Y 0.47 (0.34 to 0.66) 0.56 (0.40 to 0.79) 1.01 (0.76 to 1.35) 0.84 (0.56 to 1.27) 0.47 (0.34 to 0.64) 1.81 (1.24 to 2.64)

Male <60 <120 N 0.62 (0.48 to 0.79)
≥120 to <150 N 0.72 (0.51 to 1.01) 1.07 (0.70 to 1.64) 0.52 (0.39 to 0.69) 0.67 (0.42 to 1.06) 1.37 (0.98 to 1.92) 0.49 (0.31 to 0.76)
≥120 to <150 Y 0.63 (0.44 to 0.91) 0.94 (0.61 to 1.43) 0.56 (0.40 to 0.78) 0.68 (0.43 to 1.07) 1.13 (0.80 to 1.61) 0.60 (0.38 to 0.93)
≥150 N 0.63 (0.44 to 0.91) 0.91 (0.58 to 1.42) 0.58 (0.42 to 0.80) 0.69 (0.43 to 1.12) 1.10 (0.78 to 1.54) 0.63 (0.40 to 1.00)
≥150 Y 0.56 (0.40 to 0.77) 0.80 (0.56 to 1.14) 0.62 (0.46 to 0.83) 0.70 (0.46 to 1.06) 0.90 (0.67 to 1.23) 0.77 (0.52 to 1.15)

≥60 <120 N 0.76 (0.62 to 0.94)
≥120 to <150 N 0.70 (0.53 to 0.92) 0.92 (0.64 to 1.32) 0.64 (0.51 to 0.81) 0.76 (0.52 to 1.10) 1.09 (0.85 to 1.39) 0.70 (0.48 to 1.00)
≥120 to <150 Y 0.62 (0.46 to 0.83) 0.81 (0.57 to 1.16) 0.69 (0.52 to 0.91) 0.76 (0.53 to 1.11) 0.90 (0.69 to 1.16) 0.85 (0.59 to 1.23)
≥150 N 0.62 (0.46 to 0.83) 0.79 (0.55 to 1.12) 0.71 (0.54 to 0.93) 0.78 (0.54 to 1.13) 0.87 (0.67 to 1.12) 0.90 (0.63 to 1.30)
≥150 Y 0.54 (0.43 to 0.69) 0.69 (0.55 to 0.87) 0.76 (0.60 to 0.96) 0.79 (0.59 to 1.05) 0.72 (0.59 to 0.87) 1.10 (0.83 to 1.46)

CRT-D, cardiac resynchronisation therapy pacemaker with defibrillation therapy; CRT-P, cardiac resynchronisation therapy pacemakers; ICD, implantable cardioverter defibrillators;
LBBB, left bundle branch block; MT, medical therapy.
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results stratified by a single characteristics, our multivariate ana-
lysis allows the expected relative effect of alternative devices to
be assessed based on an individual patient’s QRS duration, LBBB
morphology, age and gender by reading off the relevant HR from
table 2. These results could be integrated with a prediction
model for mortality in untreated patients, to predict life expect-
ancies for alternative devices. This could be included in a web-
based decision tool28 and integrated into a ‘patient decision aid’
to facilitate shared decision making and informed consent.29

The results for the unadjusted network meta-analysis are con-
sistent with those published previously,30 but, in addition, the
current analysis shows a statistically significant benefit of CRT-D
over both ICD and CRT-P, with the differences driven by evi-
dence from more recently published trials.11 12 18 Given the het-
erogeneity within and across the included studies, the
unadjusted results may be confounded.

The adjusted analysis suggests that increasing QRS duration
and LBBB morphology are associated with greater mortality
benefit from CRT. This is consistent with the mechanism of
mechanical cardiac resynchronisation in LBBB, and the higher
risk of pump failure deaths among patients with longer QRS
durations. Analyses of published data have found both variables
to improve CRT efficacy in univariate analyses.4 5 A recent
meta-analysis of individual patient data from 3872 patients
included in five CRT (P or D) trials found no association
between LBBB morphology and CRT efficacy for all-cause mor-
tality when QRS duration had been controlled for.7 This
meta-analysis was smaller than that presented here (662 deaths
in 3872 patients compared with 2422 deaths in 12 638 patients
with 1430 deaths observed in CRT trials) and pooled results
from CRT-P with CRT-D and ICD with medical therapy.

We also found important effects of age and gender. These
effects are likely to be related to the underlying risk of compet-
ing causes of death; sudden (presumed arrhythmic) death,
pump failure or other causes. Women are less likely to experi-
ence sudden cardiac death than men.31 Similarly, although the
incidence of sudden cardiac death increases with age, the pro-
portion of cardiac deaths that are sudden decreases owing to
high numbers of other cardiac causes of death.32 33 As CRT
delivers most of its benefit through pump function and ICD by
treating arrhythmias leading to sudden cardiac death, this may
explain the higher efficacy of ICD therapy in younger patients
and men, and the higher efficacy of CRT in women. The effects
of age and gender observed by pooling these trials were not
observed consistently in the individual studies. Nor have they
been identified in previous meta-analyses, with one exception—
an analysis of published subgroup data that showed lower effi-
cacy of ICD on all-cause mortality in women.9

No evidence was found for interaction effects of devices with
NYHA class, aetiology or LVEF. Of course, these variables do
predict absolute incremental mortality benefit from therapy as
they are known to be predictive of life expectancy in the
absence of device intervention.34

Our analysis is in line with current clinical guidance (table 3),
though suggests that there is no evidence to support different
recommendations according to a patients aetiology. It also sug-
gests that age and gender play a significant role in determining
the relative benefit of alternative devices. For example, although
CRT-D offers benefits over ICD in the overall patient popula-
tion, in men strong evidence of benefit is only observed for
those with the strongest indication for CRT (≥60 years, QRS
≥150 ms, LBBB). Gender is mentioned in the CRT guideline as
predictive of improved effect but not in guidance for ICD use,
and neither guideline mentions age.

Limitations
This analysis does not explore the impact of atrial fibrillation or
chronic kidney disease on device efficacy. Of the 10 CRT trials
in the individual patient database, only one included patients
with permanent atrial fibrillation.11 Earlier analyses indicated
that data on serum creatinine was unavailable for approximately
one third of patients. There were, therefore, insufficient data to
assess the impact of either of these features on mortality.

Outcomes for the therapies studied are dependent on both
device hardware and programming. This analysis reflects the

Table 3 Summary of relevant international guidance

Device Patient group Recommendation Reference

CRT-P LVEF ≤35%, NYHA class II, III,
ambulatory class IV:

35

QRS≥150 ms with LBBB Class I Level A
QRS≥150 ms without LBBB Class IIa Level B
QRS ≥120 to <150 ms with LBBB Class I Level B
QRS ≥120 to <150 ms without
LBBB

Class IIb Level B

ICD LVEF ≤35%, NYHA class II–III 2

Ischaemic Class I Level A
Non-ischaemic Class I Level B

CRT-D Patients in whom CRT-P is
indicated and ICD is planned

Class I Level A 35

Patients with indicators of better
prognosis and/or ischaemic heart
disease

Class IIa Level B

CRT-D, cardiac resynchronisation therapy pacemaker with defibrillation therapy;
CRT-P, cardiac resynchronisation therapy pacemakers; ICD, implantable cardioverter
defibrillators; LBBB, left bundle branch block; NYHA, New York Heart Association.

Key messages

What is already known on this subject?
▸ Implantable cardioverter defibrillators (ICD), cardiac

resynchronisation therapy pacemakers (CRT-P) and the
combination therapy (CRT-D) reduce all-cause mortality
compared with medical therapy alone. Similarly, CRT-D
reduces all-cause mortality compared with ICD. Limited data
exist to compare CRT-D with CRT-P. Evidence of how the
mortality benefit of these implantable devices varies with
patient characteristics is largely limited to individual trial
subgroup analyses.

What might this study add?
▸ This individual patient data network meta-analysis found

that patients with QRS duration ≥150 ms, left bundle
branch block morphology and female gender benefited more
from CRT-P and CRT-D, and those <60 years and of male
gender benefited more from ICD.

How might this impact on clinical practice?
▸ The analysis allows the survival benefit of each device to be

estimated for specific patient groups.
▸ This information can be used directly in assessments of net

clinical benefit and cost-effectiveness. This evidence has
been used in this way at the National Institute for Health
and Care Excellence (NICE) in their recent guidance update.
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efficacy of the devices and leads available at the time and as pro-
grammed in the clinical trials. With the benefit of current tech-
nology, we would expect greater efficacy of ICD and CRT in
clinical practice. Evidence regarding the impact of these factors
on outcomes should be taken in to account when considering
alternative interventions.

The results should not be extrapolated to patients with
characteristics absent or under-represented within the data.
Namely, to the effect of CRT in patients with NYHA class I or
QRS duration ≤120 ms, to CRT-P in patients with NYHA class
II or to any patients with LVEF >35%.

Given the different impacts of CRT and ICD therapy on
pump failure and sudden cardiac death,17 36 it would have been
interesting to analyse the impact of the devices on each cause of
death. This was not pursued, as there were concerns about the
reliability and consistency in the assignment of mode of death.

Value for money is another important consideration at the
healthcare system level. The analysis reported here alongside
further analysis of this database to estimate hospitalisation rates
and quality of life has been used to inform such a cost-
effectiveness analysis.3 This will be the subject of a separate
publication.
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