Skip to main content
Log in

Statins and the Role of Nitric Oxide in Chronic Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Endothelial dysfunction plays an important role in a number of cardiovascular diseases. An important pathogenetic factor for the development of endothelial dysfunction is lack of nitric oxide (NO), which is a potent endothelium-derived vasodilating substance. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), originally designed to lower plasma cholesterol levels, seem to ameliorate endothelial dysfunction by a mechanism so far only partly understood. However, statins increase nitric oxide synthase activity. It has been speculated that this and other “side effects” of statin treatment are due to inhibition of Rho, an intracellular signalling protein that initiates Rho kinase transcription. Moreover, statins possess anti-inflammatory characteristics. Some statins have proven to lower plasma levels of C-reactive protein, which is induced by pro-inflammatory cytokines. Other statins have been demonstrated to directly inhibit pro-inflammatory cytokine induction. Finally, some data suggest that statins might be able to counterbalance an increased production of oxygen free radicals. Since chronic heart failure is accompanied not only by endothelial dysfunction, but also by pro-inflammatory cytokine activation and enhanced formation of oxygen free radicals, it is tempting to speculate that statins might be an ideal candidate to treat certain features of this disease. The doses needed to achieve the desired effects might be much lower than those needed to treat hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vogel RA. Cholesterol lowering and endothelial dysfunction. Am J Med 1999;107:479-487.

    Google Scholar 

  2. Aengevaeren WR. Beyond lipids-the role of the endothelium in coronary artery disease. Atherosclerosis 1999;147(Suppl 1):S11-S16.

    Google Scholar 

  3. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Chaitman BR, Leslie S, Stern T. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: The MIRACL study: A randomised controlled trial. JAMA 2001;285:1711-1718.

    Google Scholar 

  4. Cooke JP, Tsao PS. Is NO an endogenous antiatherogenic molecule? Arterioscler Thromb 1994;30:325-333.

    Google Scholar 

  5. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999;340:115-126.

    Google Scholar 

  6. Furchgott RF, Zawadski JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-376.

    Google Scholar 

  7. Moncada S, Higgs EA. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002-2012.

    Google Scholar 

  8. Hecker M, Mulsch A, Bassenge E, Forstermann U, Busse R. Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: Physiological implications. Biochem J 1994;299:247-252.

    Google Scholar 

  9. Shaul PW. Regulation of endothelial nitric oxide synthase: Location, location, location. Annu Rev Physiol 2002;64:749-774.

    Google Scholar 

  10. Vallance P, Chan N. Endothelial function and nitric oxide: Clinical relevance. Heart 2001;85:342-350.

    Google Scholar 

  11. Bogdan C, Rollinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev 2000;173:17-26.

    Google Scholar 

  12. Mombouli JV, Vanhoutte PM. Endothelial dysfunction: From physiology to therapy. J Mol Cell Cardiol 1999;31:61-74.

    Google Scholar 

  13. Bassenge E, Fink B, Schwemmer M. Oxidative stress, vascular dysfunction and heart failure. Heart Fail Rev 1999;4:133-145.

    Google Scholar 

  14. Sharma R, Coats AJS, Anker SD. The role of inflammatory mediators in chronic heart failure: Cytokines, nitric oxide, and endothelin-1. Int J Cardiol 2000;72:175-186.

    Google Scholar 

  15. Anker SD, Volterrani M, Egerer KR, Felton CV, Kox WJ, Poole-Wilson PA, Coats AJ. Tumour necrosis factor alpha as a predictor of impaired peak leg blood flow in patients with chronic heart failure. QJM 1998;91:199-203.

    Google Scholar 

  16. Ceconi C, Curello S, Bachetti T, Corti A, Ferrari R. Tumor necrosis factor in congestive heart failure: A mechanism of disease for the new millennium? Prog Cardiovasc Dis 1998;41(1 Suppl 1):25-30.

    Google Scholar 

  17. Anker SD, Ponikowski PP, Clark AL, Leyva F, Rauchhaus M, Kemp M, Teixeira MM, Hellewell PG, Hooper J, P oole-Wilson PA, Coats AJ. Cytokines and neurohormones relating to body composition alterations in thewasting syndrome of chronic heart failure. Eur Heart J 1999;20:683-693.

    Google Scholar 

  18. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ, Anker SD. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000;102:3060-3067.

    Google Scholar 

  19. Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996;384:353-355.

    Google Scholar 

  20. Stewart D. Update on endothelin. Can J Cardiol 1998;14(Suppl D):11D-13D.

    Google Scholar 

  21. Drexler H, Hayoz D, M unzel T, Just HJ, Zelis R, Brunner HR. Endothelial function in congestive heart failure. Am Heart J 1993;126:761-764.

    Google Scholar 

  22. Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJ, Anker SD, Hambrecht R. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: Results from 2 placebo-controlled studies. Circulation 2002;105:2619-2624.

    Google Scholar 

  23. Hayoz D, Drexler H, Munzel T et al. Flow mediated arterial dilation is abnormal in congestive heart failure. Circulation 1993;87:VII-92-VII-96.

    Google Scholar 

  24. Drexler H, Hayoz D, Munzel T et al. Endothelial function in chronic congestive heart failure. Am J Cardiol 1992;69:1596-1601.

    Google Scholar 

  25. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, Harrington D, Kox WJ, Poole-Wilson PA, Coats AJ. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997;349:1050-1053.

    Google Scholar 

  26. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, Poole-Wilson PA, Coats AJ. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997;96:526-534.

    Google Scholar 

  27. von Haehling S, Genth-Zotz S, Anker SD, Volk HD. Cachexia: A therapeutic approach beyond cytokine antagonism. Int J Cardiol 2002;85:173-183.

    Google Scholar 

  28. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, B ishopric NH, Cooke JP, McKenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087-1094.

    Google Scholar 

  29. Satoh M, Nakamura M, Tamura G, Makita S, Segawa I, Tashiro A, Satodate R, Hiramori K. Indurcible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 1997;29:716-724.

    Google Scholar 

  30. Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol 1998;30:215-223.

    Google Scholar 

  31. Vejlstrup NG, Bouloumie A, Boesgarrd S, Andersen CB, N ielsen-Kudsk JE, Mortensen SA, K ent JD, Harrison DG, Busse R, Aldershvile J. Inducible nitric oxide synthase (iNOS) in the human heart: Expression and localization in congestive heart failure. JMol Cell Cardiol 1998;30:1215-1223.

    Google Scholar 

  32. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000;101:207-213.

    Google Scholar 

  33. Endo A, Tsujita Y, Kuroda M, Tanzawa K. Inhibition of cholesterol synthesis in vitro and in vivo by ML-236º and ML-236B, competitive inhibitors of 3-hydroxy-methylglutaryl-coenzyme A reductase. Eur J Biochem 1977;77:31-36.

    Google Scholar 

  34. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986;232:34-47.

    Google Scholar 

  35. Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol 1998;81:66B-69B.

    Google Scholar 

  36. Roberts WC. The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am J Cardiol 1997;82:106-107.

    Google Scholar 

  37. Kostner GM, Gavish D, Leopold B, Bolzano K, Weintraub MS, Breslow JL. HMG-CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation 1989;80:1313-1319.

    Google Scholar 

  38. Hunninghake CB, Stein EA, Mellies MJ. Effects of one year of treatment with pravastatin, an HMG-CoA reductase inhibitor, on lipoprotein(a). J Clin Pharmacol 1993;33:574-580.

    Google Scholar 

  39. Vaughan CJ, Gotto AM, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 2000;35:1-10.

    Google Scholar 

  40. Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. JAm Coll Cardiol 1999;33:234-241.

    Google Scholar 

  41. Laufs U, Fata VL, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998;97:1129-1135.

    Google Scholar 

  42. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1998;95:8880-8885.

    Google Scholar 

  43. Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998;31:684-691.

    Google Scholar 

  44. Molinau H, Meinertz T, Hink U, Muenzel T. HMG-CoA reductase inhibition inhibits vascular NADH oxidase activity, prevents uncoupling of nitric oxide synthase and improves endothelial dysfunction in cholesterol fed rabbits (abstract). Eur Heart J 2000;21:16.

    Google Scholar 

  45. Puddu P, Puddu GM, Muscari A. HMG-CoA reductase inhibitors: Is the endothelium the main target? Cardiology 2001;95:9-13.

    Google Scholar 

  46. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, Sanchez-Pascuala R, Hernandez G, Diaz C, Lamas S. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1998;101:2711-2719.

    Google Scholar 

  47. Feron O, Dessy C, Desager JP, Balligand JL. Hydroxymethylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 2001;103:113-118.

    Google Scholar 

  48. Sessa WC. Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins? Trends Mol Med 2001;7:189-191.

    Google Scholar 

  49. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD. Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet 1999;353:1838-1842.

    Google Scholar 

  50. Genth-Zotz S, von Haehling S, Bolger AP, Kalra PR, Coats AJS, Anker SD. Pathophysiological quantities of endotoxin induce tumor necrosis factor release in whole blood from patients with chronic heart failure. Am J Cardiol, in press.

  51. Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson PA, Coats AJS. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1997;79:1426-1430.

    Google Scholar 

  52. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 1989;3:280-287.

    Google Scholar 

  53. Hegewish S, Weh HJ, Hossfeld DK. TNF-induced cardiomyopathy. Lancet 1990;2:294-295.

    Google Scholar 

  54. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E. Long-term effects of pravastatin on plasma-concentrations of C-reactive protein. Circulation 1999;100:230-235.

    Google Scholar 

  55. Musial J, Undas A, Gajewski P, Jankowski M, Sydor W, Szczeklik A. Anti-inflammatory effects of simvastatin in subjects with hypercholesterolemia. Int J Cardiol 2001;77:247-253.

    Google Scholar 

  56. Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenyl-acetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 1997;100:2671-2679.

    Google Scholar 

  57. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001;7:687-692.

    Google Scholar 

  58. Niwa S, Totsuka T, Hayashi S. Inhibitory effects of fluvastatin, an HMG-CoA reductase inhibitor, on the expression of adhesion molecules on human monocytes cell line. Int J Immunopharmacol 1996;18:669-675.

    Google Scholar 

  59. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol 2001;21:1712-1719.

    Google Scholar 

  60. Ridley AJ. Rho family proteins: Coordinating cell responses. Trends Cell Biol 2001;11:471-477.

    Google Scholar 

  61. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res 2000;261:44-51.

    Google Scholar 

  62. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425-430.

    Google Scholar 

  63. Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Br Heart J 1991;65:245- 248.

    Google Scholar 

  64. Webb DJ, McMurray JJ. Enhanced basal nitric oxide production in heart failure. Lancet 1994;344:887-888.

    Google Scholar 

  65. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998;98:2709-2715.

    Google Scholar 

  66. Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 2001;38:194-198.

    Google Scholar 

  67. Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G. Correction of endothelial dysfunction in chronic heart failure: Additional effects of exercise training and oral L-arginine supplementation. J Am Coll Cardiol 2000;35:706-713.

    Google Scholar 

  68. Mendez C, Garcia I, Maier R. Oxidants augment endotoxin-induced activation of alveolar macrophages. Shock 1996;6:157-163.

    Google Scholar 

  69. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischemia and heart failure. Eur Heart J 1998;19:B2-B11.

    Google Scholar 

  70. Leyva F, Anker SD, Godsland IF, Teixeira M, Hellewell PG, Kox WJ, Poole-Wilson PA, Coats AJ. Uric acid in chronic heart failure: A marker of chronic inflammation. Eur Heart J 1998;19:1814-1822.

    Google Scholar 

  71. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002;106:221-226.

    Google Scholar 

  72. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 1996;28:506-514.

    Google Scholar 

  73. Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, Itter G, Rosen R, Bohm M, Nickenig G. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450-1457.

    Google Scholar 

  74. Vecchione C, Brandes RP. Withdrawal of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors elicits oxidative stress and induces endothelial dysfunction in mice. Circ Res 2002;91:173-179.

    Google Scholar 

  75. Kjekshus J, Pedersen TR, Olsson AG, Faergeman O, Pyorala K. The effects of simvastatin on the incidence of heart failure with coronary heart disease. J Card Fail 1997;3:207-213.

    Google Scholar 

  76. Vaughan CJ, M urphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996;348:1079-1082.

    Google Scholar 

  77. Richartz BM, Radovancevic B, Frazier OH, Vaughn WK, Taegtmeyer H. Low serum cholesterol levels predict high perioperative mortality in patients supported by a left-ventricular assist system. Cardiology 1998;89: 184-188.

    Google Scholar 

  78. Rauchhaus M, Koloczek V, Volk H, Kemp M, Niebauer J, Francis DP, Coats AJ, Anker SD. Inflammatory cytokines and the possible immunological role for lipoproteins in chronic heart failure. Int J Cardiol 2000;76:125-133.

    Google Scholar 

  79. Rauchhaus M, Coats AJ, Anker SD. The endotoxinlipoprotein hypothesis. Lancet 2000;356:930-933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan von Haehling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Haehling, S., Anker, S.D. & Bassenge, E. Statins and the Role of Nitric Oxide in Chronic Heart Failure. Heart Fail Rev 8, 99–106 (2003). https://doi.org/10.1023/A:1022103222857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022103222857

Navigation